Mutations affecting symmetrical migration of distal tip cells in Caenorhabditis elegans.
نویسنده
چکیده
The rotational symmetry of the Caenorhabditis elegans gonad arms is generated by the symmetrical migration of two distal tip cells (DTCs), located on the anterior and posterior ends of the gonad primordium. Mutations that cause asymmetrical migration of the two DTCs were isolated. All seven mutations were recessive and assigned to six different complementation groups. vab-3(k121) and vab-3(k143) affected anterior DTC migration more frequently than posterior, although null mutants showed no bias. The other five mutations, mig-14(k124), mig-17(k113), mig-18(k140), mig-19(k142), and mig-20(k148), affected posterior DTC migration more frequently than anterior. These observations imply that the migration of each DTC is regulated differently. mig-14 and mig-19 also affected the migration of other cells in the posterior body region. Four distinct types of DTC migration abnormalities were defined on the basis of the mutant phenotypes. vab-3; mig-14 double mutants exhibited the types of DTC migration defects seen for vab-3 single mutants. Combination of mig-17 and mig-18 or mig-19, which are characterized by the same types of posterior DTC migration defects, exhibited strong enhancement of anterior DTC migration defects, suggesting that they affect the same or parallel pathways regulating anterior DTC migration.
منابع مشابه
Talin loss-of-function uncovers roles in cell contractility and migration in C. elegans.
Integrin receptors for extracellular matrix transmit mechanical and biochemical information through molecular connections to the actin cytoskeleton and to several intracellular signaling pathways. In Caenorhabditis elegans, integrins are essential for embryonic development, muscle cell adhesion and contraction, and migration of nerve cell axons and gonadal distal tip cells. To identify key comp...
متن کاملRobust Distal Tip Cell Pathfinding in the Face of Temperature Stress Is Ensured by Two Conserved microRNAS in Caenorhabditis elegans
Biological robustness, the ability of an organism to maintain a steady-state output as genetic or environmental inputs change, is critical for proper development. MicroRNAs have been implicated in biological robustness mechanisms through their post-transcriptional regulation of genes and gene networks. Previous research has illustrated examples of microRNAs promoting robustness as part of feedb...
متن کاملA systematic RNA interference screen reveals a cell migration gene network in C. elegans.
Cell migration is essential during embryonic development and tissue morphogenesis. During gonadogenesis in the nematode Caenorhabditis elegans, migration of the distal tip cells forms two U-shaped gonad arms. Malformation results if the distal tip cells stop prematurely or follow an aberrant path, and abnormalities are easily visualized in living nematodes. Here we describe the first comprehens...
متن کاملHeparan 2-O-sulfotransferase, hst-2, is essential for normal cell migration in Caenorhabditis elegans.
The importance of heparan sulfate proteoglycans has been highlighted by a number of human genetic disorders associated with mutations in genes encoding for heparan sulfate proteoglycan protein cores or biosynthetic enzymes required for heparan sulfate (HS) assembly. To study the functional role of HS in Caenorhabditis elegans development cosmid sequence C34F6.4 was identified as the C. elegans ...
متن کاملProteomic Analysis Reveals CACN-1 Is a Component of the Spliceosome in Caenorhabditis elegans
Cell migration is essential for embryonic development and tissue formation in all animals. cacn-1 is a conserved gene of unknown molecular function identified in a genome-wide screen for genes that regulate distal tip cell migration in the nematode worm Caenorhabditis elegans. In this study we take a proteomics approach to understand CACN-1 function. To isolate CACN-1-interacting proteins, we u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 152 3 شماره
صفحات -
تاریخ انتشار 1999